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Photoacoustic microscopy (PAM) is recognized as a powerful tool for various microcirculation system 
studies. To improve the spatial resolution for the PAM images, the requirements of the system will always 
be increased correspondingly. Without additional cost of the system, we address the problem of improving 
the resolution of PAM images by integrating a deconvolution model with a directional total variation 
regularization. Additionally, we present a primal-dual-based algorithm to solve the associated optimization 
problem efficiently. Results from both test images and some PAM images studies validate the effectiveness 
of the proposed method in enhancing the spatial resolution. We expect the proposed technique to be an 
alternative resolution enhancement tool for some important biomedical applications.
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Photoacoustic microscopy (PAM) has been recognized 
as a vital tool for many biomedical studies and research 
applications due to the capability of high-resolution 
deep tissue imaging[1–7]. Up to now, PAM is always 
implemented by scanning the field-of-view on a point-
by-point basis. In PAM system, to enhance the lateral 
resolution for optical-resolution PAM (OR-PAM), the 
optical numerical aperture (NA) should be increased[8,9]. 
At the same time, the corresponding working distance 
and thus the penetration depth will also be decreased[10]. 
Besides, in the experiments the optical scanning devices 
should have higher performance indexes, which imply 
more hardware requirements of the system. For another 
form of PAM, acoustic-resolution PAM(AR-PAM), the 
spatial resolution is based on the AR of the transducer[11].  
To improve the resolution, higher performance ultra-
sound transducer need to be provided.

Many efforts have been made to improve the spatial 
resolution without increasing cost of the system, result-
ing in some advanced data acquisition schemes and novel 
signal processing methods[10,12,13]. Very different from these 
state-of-art technologies, we want to improve the spatial 
resolution directly from the low-resolution PAM images 
in this letter. To reconstruct a high-resolution image 
from one or more of the low-resolution observations is 
sometimes called super-resolution technology. Significant 
efforts have been made to address this problem. Yang et al.  
proposed to use sparsity as prior knowledge for patch-
based image super-resolution[14]. A feedback-control 
framework without the information learned from other 
examples was proposed by Shan et al.[15]. Candes et al.  
presented a framework to super-resolve planar regions 

taken from 3D scenes via transform-invariant group-sparse  
regularization[16]. It is worth noting that this technol-
ogy has been successfully applied to magnetic resonance 
imaging as an off-line image processing tool to increase 
the spatial resolution[17,18].

In general, we cannot recover the absent details from 
the low-resolution image, but we expect to hallucinate 
some specific textures that are visually pleasing[16]. 
Therefore, it is very important to exploit the poten-
tial information in the observed low-resolution images 
as prior knowledge. In this letter, we explore the use 
of directional total variation (DTV) to spatial resolu-
tion enhancement for PAM images. PAM images with 
some orientational structures are very common, such 
as information of vessel diameter, hemoglobin oxy-
gen saturation, blood flow velocity, and other cellular 
microstructures. Specifically, we propose a formula-
tion that integrates a deconvolution model with this 
sparsity promoting penalty. Additionally, an efficient 
alternate iteration scheme is also presented to solve the 
associated optimization problem. Finally, the proposed 
resolution enhancement approach has been validated 
by the studies of test image, thin bar copper, and 3D  
gelatin + graphite PAM images.

The spatial resolution enhancement problem we con-
sider in this letter is how to recover a high-resolution 
image SH ∈ ℝM×N from a given low-resolution image  
SL ∈ ℝm×n (M  > m, N  > n). The process from SH to SL can 
be modeled as a blurring combined with a downsampling 
process, that is 

	 ( ),L HS K S= ⊗D � (1)
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where K is a blurring kernel often considered as a 
Gaussian kernel, D denotes a downsampling opera-
tor: ℝM×N→ℝm×n, and ⊗ is convolution operation. We 
can easily obtain another form of Eq. (1) by applying 
Plancherel’s theorem, that is 
	

H
(  ( )  ( )),LS K S= HDF F F � (2)

where F and F H are Fourier transform and inverse 
Fourier transform operators, respectively. To obtain the 
high-resolution image directly from unsampling the low-
resolution image and then deconvolving it is extremely 
ill-posed. In this letter, we propose to use DTV[19] as 
non-quadratic regularization to incorporate stronger 
prior information into the reconstruction process.

Total variation (TV) is widely used as sparsity pro-
moting penalty because of the advantages in terms 
of edge preservation and noise removal. But it often 
fails to improve the resolution of images with a few 
dominant directions. DTV has been presented to adapt 
high-level structures of the images and increase sensitiv-
ity at some certain directions. TV of an image SH(i, j)  
can be expressed as
	

2
H H

v( , ),
TV(S )= sup S ( , ), v( ) ,

i j Bi j
i j

∈
〈∇ 〉∑ i, j 	 (3)

where B2 is the unit ball with l2 norm, v(i, j) is a vec-
tor with the same dimension as ∇SH(i, j), ∇SH(i, j) = 
(∇1SH(i, j); ∇2SH(i, j)), ∇1 and ∇2 are horizontal and 
vertical difference operators, respectively. DTV is real-
ized by replacing B2 with an ellipse Eα,θ with an ori-
ented angle θ and a major axis of length α > 1. Thus, 
the definition of DTV[19] can be written as
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Moreover, the relationship between Eα,θ and B2 can be 
expressed as Eα,θ = RθTαB2, where
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If we use Rθ,Tα to represent the corresponding operators 
that act on the vector fields, Eq. (4) can be rewritten 
as
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Given the model in Eq. (2) and the DTV regularization 
term, we propose to reconstruct SH from SL by using 
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where λ is a regularization parameter.

We propose to use a primal-dual-based algorithm 
to solve Eq. (7) with DTV penalty. Firstly, Eq. (7) 
can be reformulated as the following convex–concave 
saddle-point problem:

where V = {v ∈ ℝ2MN×1|||v||∞ ≤ 1}. With the fact that 
Rθ* = R−θ and Tα* = Tα (A* denotes the adjoint operator 
of A), and the adjoint operators of the above corre-
sponding operators, we can solve Eq. (8) by the follow-
ing alternate iteration scheme:
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where ProjV ( v ) = v/(max(1, | v |)) is the Euclidean 
projector, d

2 ( )Prox r  = r /(1 + δλ) is the proximal map, 
and (div1)* = −∇ (refer to Ref. [20] for further details). 
We followed the instructions given in Refs. [20, 21] and 
chose the step-sizes δ = τ = 1/ 12  to guarantee the 
convergence. Furthermore, the initial values of the vari-
ables were set to be 0 in this letter.

A carefully selected test image (Fig. 1(a)) has been 
provided to evaluate the performance of our proposed 
method. This experimental result is presented because 
the test image has the corresponding high-resolution 
reference image and a dominant direction, which allows 
quantitative analysis. The oriented angle θ was deter-
mined by minimizing the values of DTV as θ varies 
(as in Ref. [19]). Figure 2 shows the changes of the 
DTV values of Fig. 1(a) while the oriented angle var-
ies, as can be seen, the minimum value is obtained at  
θ = −π/12, which is chosen as the parameter for our 
study, and we chose α = 3 in this simulation experiment. 

Fig. 1. Results from a test image with the upsampling factor of 4:  
(a) original 512×512 image, (b) input 128×128 low-resolution 
image, (c) result of bicubic interpolation, (d) result of sparse 
coding[14], (e) result of TV reconstruction, and (f) result of 
DTV reconstruction.
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and 52 µm interval. The optical objective is Qiset 
Microscope Objective (magnification: 10×, NA: 0.25, 
focal length: 15.8 mm, objective length: 34.0 mm). Fur-
thermore, the image area, step size, x y steps, and aver-
age times are 300×300 (µm), 3 µm, 100×100, and 10, 
respectively. And the photoacoustic signals generated 
from the sample are received by the 20 MHz focused 
ultrasound transducer. Figure 3(a) shows the PAM 
result from such setups. For the high-resolution recon-
struction, the parameters for DTV-based algorithm are 
the same with the test image study except θ, we chose  
θ = −π/3 in this letter. Furthermore, it is worth mention-
ing here that the parameters for DTV (namely (α, θ))  
should be chosen carefully. If the dominant angle is reli-
able or distinct, an appropriate higher value of α may 
guarantee better performance, otherwise, a smaller α is 
suggested. Please refer to Ref. [19] for further discussion 
about the effect of (α, θ) parameters in terms of the 
reconstruction performance. Figures 3(b)–(d) show the 
high-resolution results from different methods. As can 
be seen, the sparse coding and TV reconstruction both 
have over-smoothing problems, whereas the DTV recon-
struction provides clearer edges and holds more details 
compared with the other two methods. Alternatively, 
we use entropy and mean gradient of a single image for 
the quantitative analysis in this letter since there is no 
reference high-resolution image. The widely used image 
entropy and mean gradient can describe the amount of 
information and the detail variation of an image, respec-
tively. The values of entropy and mean gradient in Fig. 3  
are shown in Table 1, we can see that the DTV result 
holds the largest values, which may imply that it has 
the most information and texture features.

We applied a magnification factor of 4 for this test 
image, and the blurring kernel in Eq. (1) was chosen 
as a 13×13 Gaussian kernel with standard deviation 
dependent on the magnification factor (we used 1.8 for 
a factor of 4, which was followed by the instructions in 
Ref. [16]). The Matlab function imresize was also used 
to realize the bicubic interpolation, which can be mod-
eled as the downsampling operator D and upsampling 
operator D  *.

Figures 1(c)–(f) show a set of representative experi-
mental results from the study described above. As can 
be seen, the result from bicubic interpolation is very 
blurry, the sparse coding result is slightly better but 
still cannot preserve the edges very well. Result from 
TV regularization is with significant jagged artifacts, 
which leads to wobbly edges. The reconstruction based 
on DTV regularization provides high spatial resolution 
and superior quality in edge preservation, that is, clear 
straight edges. To better illustrate the performance, we 
evaluate the results quantitatively in root-mean-square 

errors (RMSEs) defined as 
2

1 1
ˆ( ) /M N

i j ij ijS S MN= = −∑ ∑  
where S is the reference image and Ŝ  denotes the 
estimated image. The RMSEs for Figs. 1(c)–(f) are 
12.2137, 11.9951, 12.4813, and 11.4126, respectively, 
which agree with the qualitative comparison. It is also 
worth noting that although the proposed method pro-
vides small improvement in RMSE, it has the exciting 
visual effects.

Some PAM images have also been used to validate 
the effectiveness of the proposed method. In this letter, 
a combined laser-scanning OR-PAM with optical micro-
scope system has been set up in transmission mode. 
In the system, the excitation part is a diode-pumped 
Nd:YLF Q-switched pulsed laser (wavelength 523 nm, 
duration time 6 ns; IS8II-E, INNOSLAB Edgewave, 
Germany). The maximum pulse repetition rate of the 
laser is up to 5 kHz. The laser beam is focused into 
the object by an air-conditioned optical objective and 
optically scanned by the 2D precision motor (Z-108, 
Thorlabs, Newton, USA) to form optical and photo-
acoustic images, which image the dual contrasts of opti-
cal absorption and optical intensity simultaneously.

In our first experiment, the sample is Agar/UK 
G2730C 400 mesh thin bar copper with 8 µm linewidth 

Fig. 2. Curve of the DTV values of the image shown in  
Fig. 1(a) while the oriented angle 6 varies.

Fig. 3. Results from enhancing resolution of thin bar copper 
image with the upsampling factor of 4: (a) low-resolution 
100×100 PAM image, (b) 400×400 result of sparse coding,  
(c) 400×400 result of TV reconstruction, and (d) 400×400 
result of DTV reconstruction.
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In PAM experiments, the strongest photoacoustic sig-
nal generates where the phantom absorption density is 
greatest, the distribution of the phantom observed opti-
cally closely maps to the photoacoustic images. In our 
second experiment, the sample is 3D polyacrylamide 
gel (8% acrylamide + 0.5% bis-acrylamide) with graph-
ite powder in a standard cell culture dish (PN: 16235-
1SGP, 35×12 (mm), diameter: 20 mm), the optical 
objective is Nikon PH3 DL (plan magnification: 40×, 
NA: 0.65, working distance: 0.48 mm, tube length: 160).  
The sample includes many spots (different graphite 
granule distributions) in different layers. One spot of 
non-uniform distribution was selected for the optical 
scanning. The parameters for the image area, step size, 
x y steps, average times, and center frequency of focused 
ultrasound transducer are set to be 1.2×1.2 (mm), 10 µm,  
120×120, 10, and 40 MHz, respectively. The value of 9 
is −5π/12 in this letter. Figure 4 shows the PAM result 
and a set of representative high-resolution results. Fig-
ure 5 shows the close-ups of Fig. 4 identified by the 
red rectangles. Again, the relative entropy and mean 
gradient values are presented in Table 2. As expected, 
the DTV reconstruction holds the best performance of 

enhancing the spatial resolution for the PAM images, 
from both visual effects and quantitative analysis. 
Moreover, the DTV result can express more accurate 
details of the absorption of graphite powder distribution 
to microlevel.

In conclusion, we present a novel method for recon-
structing high-resolution PAM images from low-resolution  
ones without increasing cost of the PAM system. An 
efficient primal-dual-based algorithm is described to 
solve the resulting optimization problem. We use both 
test image and some PAM images to demonstrate the 
improvement in enhancing the spatial resolution by the 
proposed method. Specifically, one can observe signifi-
cantly clearer edges and details from the proposed high-
resolution images. As we have made clear throughout 
this letter, the DTV-based method is geared to the 
images with some orientational edges or textures, other-
wise, there can be some artifacts produced. In addition, 
since we do not incorporate any other prior informa-
tion except the DTV, input images missing a mass of 
textures cannot be recovered. An important but also 
a difficult issue in the proposed technology is how to 
accurately estimate the blurring kernel rather than 
empirical selection, which is also our future research 
direction. Although the proposed technology sometimes 
can provide a little more thick edges and hallucinate the 
textures compared with the real high-resolution images, 
it is indeed effective in improving the spatial resolution. 
And we expect the proposed method to be an alterna-
tive tool to enhance the PAM images resolution.

Table 1. Values of Image Entropy and Mean Gradient 
in Fig. 3

Type of 
Values

Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)

Image 
Entropy

0.9630 0.9756 0.9897 1.0556

Mean 
Gradient

4.5×10-5 6.7×10-5 1×10-4 7.4×10-4

Table 2. Values of Image Entropy and Mean 
Gradient in Fig. 4

Type of 
Values

Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d)

Image 
Entropy

1.0343 1.0364 1.0399 1.1302

Mean 
Gradient

3.5×10-5 5.2×10-5 8.6×10-5 5.7×10-5

Fig. 4. Results from enhancing resolution of 3D gelatin + 
graphite image with the upsampling factor of 4: (a) low-resolu-
tion 120×120 PAM image, (b) 480×480 result of sparse coding,  
(c) 480×480 result of TV reconstruction, and (d) 480×480 
result of DTV reconstruction.

Fig. 5. Close-ups of Fig. 4 corresponding to the red rectangles: 
(a) close-ups of Fig. 4(a), (b) close-ups of Fig. 4(b), (c) close-ups  
of Fig. 4(c), and (d) close-ups of Fig. 4(d). As can be seen, the 
proposed result can show more accurate details of the absorp-
tion of graphite powder distribution to microlevel.



 	 121701-5�

COL 12(12), 121701(2014) 	 CHINESE OPTICS LETTERS� December 10, 2014

This work was supported by the National Natural Sci-
ence Foundation of China (Nos. 61174016, 61201307, and 
61371045) and the Fundamental Research Funds for the 
Central Universities (No. 2013132). The authors thank 
Prof. Paichi Li and the Ultrasound Imaging Laboratory 
of National Taiwan University, China, for the support.

References
  1. � H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Bio-

technol. 24, 848 (2006).
  2. � L. V. Wang, Nat. Photon. 3, 503 (2009).
  3. � M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, 

Opt. Lett. 31, 474 (2006).
  4. � C. Kim, S. Park, J. Kim, S. Lee, M. Jeon, J. Kim, and K. Oh,  

J. Biomed. Opt. 18, 10501 (2013).
  5. � J. J. Yao and L. V. Wang, Laser Photon. Rev. 7, 758 (2013).
  6. � X. Yang, X. Cai, K. Maslov, L. V. Wang, and Q. Luo, Chin. Opt. 

Lett. 8, 609 (2010).
  7. � S. Ye, J. Yang, J. Xi, Q. Ren, and C. Li, Chin. Opt. Lett. 10, 

121701 (2012).
  8. � X. Chen, Y. Lei, Y. Wang, and D. Yu, Chin. Opt. Lett. 9, 

121001 (2011).
  9. � C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, 

and L. V. Wang, J. Biomed. Opt. 17, 020501 (2012).

10. � J. H. Chen, R. Q. Lin, H. N. Wang, J. Meng, H. R. Zheng, and 
L. Song, Opt. Express 21, 7316 (2013).

11. � W. X. Xing, L. D. Wang, K. Maslov, and L. V. Wang, Opt. Lett. 
38, 52 (2013).

12. � J. Meng, C. B. Liu, J. X. Zheng, R. Q. Lin, and L. Song,  
J. Biomed. Opt. 13, 036003 (2014).

13. � C. Zhang, K. Maslov, J. Yao, and L. V. Wang, J. Biomed. Opt. 
17, 116016 (2012).

14. � J. C. Yang, J. Wright, T. S. Huang, and Y. Ma, IEEE Trans. 
Image Process. 19, 2861 (2010).

15. � Q. Shan, Z. R. Li, J. Y. Jia, and C. K. Tang, ACM Trans. Graph. 
27, 153 (2008).

16. � C. F. Granda and E. J. Candes, in Proceedings of 2013 IEEE 
International Conference on Computer Vision 3336 (2013).

17. � E. V. Reeth, I. W. K. Tham, C. H. Tan, and C. L. Poh, Concepts 
Magn. Reson. Part A 40, 306 (2012).

18. � S. H. Joshi, A. Marquina, S. J. Osher, I. Dinov, J. D. V. Horn, 
and A. W. Toga, in Proceedings of 2009 IEEE International Sym-
posium on Biomedical Imaging: From Nano to Macro 161 (2009).

19. � I. Bayram and M. E. Kamasak, IEEE Signal Process. Lett. 19, 
781 (2012).

20. � A. Chambolle and T. Pock, J. Math. Imaging Vis. 40, 120  
(2011).

21. � F. Knoll, K. Bredies, T. Pock, and R. Stollberger, Magn. Reson. 
Med. 65, 480 (2011).


